Reversible self-assembly of superstructured networks

Author:

Freeman Ronit1ORCID,Han Ming2,Álvarez Zaida1,Lewis Jacob A.3ORCID,Wester James R.1ORCID,Stephanopoulos Nicholas1ORCID,McClendon Mark T.1,Lynsky Cheyenne1ORCID,Godbe Jacqueline M.4ORCID,Sangji Hussain3ORCID,Luijten Erik567ORCID,Stupp Samuel I.13458ORCID

Affiliation:

1. Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA.

2. Applied Physics Graduate Program, Northwestern University, Evanston, IL 60208, USA.

3. Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.

4. Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.

5. Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.

6. Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.

7. Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA.

8. Department of Medicine, Northwestern University, Chicago, IL 60611, USA.

Abstract

Chemically reversible hydrogels The dynamic reorganization of some cellular biopolymers in response to signals has inspired efforts to create artificial materials with similar properties. Freeman et al. created hydrogels based on peptide amphiphiles that can bear DNA strands that assemble into superstructures and that disassemble in response to chemical triggers. The addition of DNA conjugates induced transitions from micelles to fibers and bundles of fibers. The resulting hydrogels were used as an extracellular matrix mimic for cultured cells. Switching the hydrogel between states also switched astrocytes between their reactive and naïve phenotypes. Science , this issue p. 808

Funder

National Science Foundation

National Institutes of Health

U.S. Department of Energy

Agència de Gestió d'Ajust Universitaris i de Recerca, AGAUR

Paralyzed Veterans of America Research Foundation

Catalyst Award from the Center for Regenerative Nanomedicine (CRN) at the Simpson Querrey Institute

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 240 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3