Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy

Author:

Li Yuzhang1ORCID,Li Yanbin1ORCID,Pei Allen1ORCID,Yan Kai1,Sun Yongming1ORCID,Wu Chun-Lan1ORCID,Joubert Lydia-Marie2ORCID,Chin Richard3,Koh Ai Leen3ORCID,Yu Yi4,Perrino John2ORCID,Butz Benjamin15ORCID,Chu Steven67ORCID,Cui Yi18ORCID

Affiliation:

1. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.

2. Cell Sciences Imaging Facility, Stanford University School of Medicine, Stanford, CA 94305, USA.

3. Stanford Nano Shared Facility, Stanford University, Stanford, CA 94305, USA.

4. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.

5. Institut für Werkstofftechnik and Gerätezentrum für Mikro- und Nanoanalytik (MNaF), Universität Siegen, 57068 Siegen, Germany.

6. Department of Physics, Stanford University, Stanford, CA 94305, USA.

7. Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.

8. Stanford Institute for Materials and Energy Sciences, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, Menlo Park, CA 94025, USA.

Abstract

Frozen in time The electrochemical processes occurring in a battery are highly dynamic. To understand the complexities of the charge and discharge cycles, you need to be able to watch the processes in situ or to freeze the battery rapidly for ex situ analysis. Li et al. applied cryo–electron microscopy techniques commonly used for studying biological samples to examine batteries. They identified the solid electrolyte interphase that forms, observed the interactions of Li with the interphase, and captured the formation of dendrites that can be detrimental to the lifetime of a battery. Science , this issue p. 506

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3