Simultaneous cross-evaluation of heterogeneous E. coli datasets via mechanistic simulation

Author:

Macklin Derek N.12ORCID,Ahn-Horst Travis A.12ORCID,Choi Heejo12ORCID,Ruggero Nicholas A.23ORCID,Carrera Javier12,Mason John C.12ORCID,Sun Gwanggyu12ORCID,Agmon Eran12ORCID,DeFelice Mialy M.12ORCID,Maayan Inbal12ORCID,Lane Keara12,Spangler Ryan K.12,Gillies Taryn E.12ORCID,Paull Morgan L.1ORCID,Akhter Sajia1ORCID,Bray Samuel R.1ORCID,Weaver Daniel S.4ORCID,Keseler Ingrid M.4ORCID,Karp Peter D.4ORCID,Morrison Jerry H.2ORCID,Covert Markus W.12ORCID

Affiliation:

1. Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

2. Allen Discovery Center at Stanford University, Stanford University, Stanford, CA 94305, USA.

3. Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.

4. SRI International, Menlo Park, CA 94025, USA.

Abstract

The extensive heterogeneity of biological data poses challenges to analysis and interpretation. Construction of a large-scale mechanistic model of Escherichia coli enabled us to integrate and cross-evaluate a massive, heterogeneous dataset based on measurements reported by various groups over decades. We identified inconsistencies with functional consequences across the data, including that the total output of the ribosomes and RNA polymerases described by data are not sufficient for a cell to reproduce measured doubling times, that measured metabolic parameters are neither fully compatible with each other nor with overall growth, and that essential proteins are absent during the cell cycle—and the cell is robust to this absence. Finally, considering these data as a whole leads to successful predictions of new experimental outcomes, in this case protein half-lives.

Funder

National Science Foundation

National Institutes of Health

National Institute of Standards and Technology

Agilent Foundation

Paul G. Allen Family Foundation

U.S. Department of Energy

Stanford University

Thomas and Stacey Siebel Foundation

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3