Hyperspectral imaging of exciton confinement within a moiré unit cell with a subnanometer electron probe

Author:

Susarla Sandhya12ORCID,Naik Mit H.13,Blach Daria D.4ORCID,Zipfel Jonas2ORCID,Taniguchi Takashi5ORCID,Watanabe Kenji6ORCID,Huang Libai4ORCID,Ramesh Ramamoorthy137ORCID,da Jornada Felipe H.89ORCID,Louie Steven G.13ORCID,Ercius Peter2ORCID,Raja Archana2ORCID

Affiliation:

1. Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

2. Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

3. Department of Physics, University of California, Berkeley, CA 94720, USA.

4. Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.

5. International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

6. Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

7. Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.

8. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.

9. Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

Abstract

Electronic and optical excitations in two-dimensional systems are distinctly sensitive to the presence of a moiré superlattice. We used cryogenic transmission electron microscopy and spectroscopy to simultaneously image the structural reconstruction and associated localization of the lowest-energy intralayer exciton in a rotationally aligned WS 2 -WSe 2 moiré superlattice. In conjunction with optical spectroscopy and ab initio calculations, we determined that the exciton center-of-mass wave function is confined to a radius of approximately 2 nanometers around the highest-energy stacking site in the moiré unit cell. Our results provide direct evidence that atomic reconstructions lead to the strongly confining moiré potentials and that engineering strain at the nanoscale will enable new types of excitonic lattices.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3