Scaffolding protein functional sites using deep learning

Author:

Wang Jue12ORCID,Lisanza Sidney123ORCID,Juergens David124ORCID,Tischer Doug12ORCID,Watson Joseph L.12ORCID,Castro Karla M.5,Ragotte Robert12ORCID,Saragovi Amijai12ORCID,Milles Lukas F.12ORCID,Baek Minkyung12ORCID,Anishchenko Ivan12ORCID,Yang Wei12,Hicks Derrick R.12ORCID,Expòsit Marc124ORCID,Schlichthaerle Thomas12ORCID,Chun Jung-Ho123ORCID,Dauparas Justas12ORCID,Bennett Nathaniel124ORCID,Wicky Basile I. M.12ORCID,Muenks Andrew12,DiMaio Frank12ORCID,Correia Bruno5ORCID,Ovchinnikov Sergey67ORCID,Baker David128ORCID

Affiliation:

1. Department of Biochemistry, University of Washington, Seattle, WA 98105, USA.

2. Institute for Protein Design, University of Washington, Seattle, WA 98105, USA.

3. Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98105, USA.

4. Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98105, USA.

5. Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

6. FAS Division of Science, Harvard University, Cambridge, MA 02138, USA.

7. John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA.

8. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA.

Abstract

The binding and catalytic functions of proteins are generally mediated by a small number of functional residues held in place by the overall protein structure. Here, we describe deep learning approaches for scaffolding such functional sites without needing to prespecify the fold or secondary structure of the scaffold. The first approach, “constrained hallucination,” optimizes sequences such that their predicted structures contain the desired functional site. The second approach, “inpainting,” starts from the functional site and fills in additional sequence and structure to create a viable protein scaffold in a single forward pass through a specifically trained RoseTTAFold network. We use these two methods to design candidate immunogens, receptor traps, metalloproteins, enzymes, and protein-binding proteins and validate the designs using a combination of in silico and experimental tests.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 245 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3