Nanophase Transition Metal Oxides Show Large Thermodynamically Driven Shifts in Oxidation-Reduction Equilibria

Author:

Navrotsky Alexandra1,Ma Chengcheng1,Lilova Kristina1,Birkner Nancy1

Affiliation:

1. Peter A. Rock Thermochemistry Laboratory and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit, University of California at Davis, Davis, CA 95616, USA.

Abstract

Feeling the Pinch Nanoparticles exhibit many different properties compared to their larger counterparts, but how the stability of certain phases relative to others is affected by a change in particle size is often unclear. Using a thermodynamic probe sensitive to nanoparticle surfaces, Navrotsky et al. (p. 199 ) show that surface energy strongly influences the stability of some metal oxides relative to others. For example, nanoparticles of CoO, which are stable at larger sizes, are only stable over a very narrow range of conditions due their high surface energies. Cobalt oxides are catalysts that may one day promote the cost-effective generation of hydrogen from water, but nanoparticles in soils and biological systems—including iron and manganese oxides—also feel the pinch of surface energy on their range of stability.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3