Geomicrobiology: How Molecular-Scale Interactions Underpin Biogeochemical Systems

Author:

Newman Dianne K.1,Banfield Jillian F.2

Affiliation:

1. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.

2. Departments of Earth and Planetary Science and Environmental Science, Policy, and Management, University of California–Berkeley, Berkeley, CA 94720, USA.

Abstract

Microorganisms populate every habitable environment on Earth and, through their metabolic activity, affect the chemistry and physical properties of their surroundings. They have done this for billions of years. Over the past decade, genetic, biochemical, and genomic approaches have allowed us to document the diversity of microbial life in geologic systems without cultivation, as well as to begin to elucidate their function. With expansion of culture-independent analyses of microbial communities, it will be possible to quantify gene activity at the species level. Genome-enabled biogeochemical modeling may provide an opportunity to determine how communities function, and how they shape and are shaped by their environments.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3