Lifelong restructuring of 3D genome architecture in cerebellar granule cells

Author:

Tan Longzhi12ORCID,Shi Jenny123ORCID,Moghadami Siavash14ORCID,Parasar Bibudha1ORCID,Wright Cydney P.15ORCID,Seo Yunji1ORCID,Vallejo Kristen6ORCID,Cobos Inma6ORCID,Duncan Laramie7,Chen Ritchie2,Deisseroth Karl278ORCID

Affiliation:

1. Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.

2. Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

3. Department of Chemistry, Stanford University, Stanford, CA 94305, USA.

4. Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.

5. Department of Biology, Stanford University, Stanford, CA 94305, USA.

6. Department of Pathology, Stanford University, Stanford, CA 94305, USA.

7. Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.

8. Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.

Abstract

The cerebellum contains most of the neurons in the human brain and exhibits distinctive modes of development and aging. In this work, by developing our single-cell three-dimensional (3D) genome assay—diploid chromosome conformation capture, or Dip-C—into population-scale (Pop-C) and virus-enriched (vDip-C) modes, we resolved the first 3D genome structures of single cerebellar cells, created life-spanning 3D genome atlases for both humans and mice, and jointly measured transcriptome and chromatin accessibility during development. We found that although the transcriptome and chromatin accessibility of cerebellar granule neurons mature in early postnatal life, 3D genome architecture gradually remodels throughout life, establishing ultra–long-range intrachromosomal contacts and specific interchromosomal contacts that are rarely seen in neurons. These results reveal unexpected evolutionarily conserved molecular processes that underlie distinctive features of neural development and aging across the mammalian life span.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3