Materials challenges and opportunities for quantum computing hardware

Author:

de Leon Nathalie P.1ORCID,Itoh Kohei M.2,Kim Dohun3ORCID,Mehta Karan K.4,Northup Tracy E.5ORCID,Paik Hanhee6ORCID,Palmer B. S.78ORCID,Samarth N.9ORCID,Sangtawesin Sorawis10ORCID,Steuerman D. W.11ORCID

Affiliation:

1. Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA.

2. School of Fundamental Science and Technology, Keio University, Yokohama 223-8522, Japan.

3. Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea.

4. Department of Physics, Institute for Quantum Electronics, ETH Zürich, 8092 Zürich, Switzerland.

5. Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria.

6. IBM Quantum, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA.

7. Laboratory for Physical Sciences, University of Maryland, College Park, MD 20740, USA.

8. Quantum Materials Center, University of Maryland, College Park, MD 20742, USA.

9. Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.

10. School of Physics and Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.

11. Kavli Foundation, 5715 Mesmer Avenue, Los Angeles, CA 90230, USA.

Abstract

Combatting noise on the platform The potential of quantum computers to solve problems that are intractable for classical computers has driven advances in hardware fabrication. In practice, the main challenge in realizing quantum computers is that general, many-particle quantum states are highly sensitive to noise, which inevitably causes errors in quantum algorithms. Some noise sources are inherent to the current materials platforms. de Leon et al. review some of the materials challenges for five platforms for quantum computers and propose directions for their solution. Science , this issue p. eabb2823

Funder

National Science Foundation

U.S. Department of Energy

University of Pennsvlvania

Horizon 2020 Framework Programme

Eidgenössische Technische Hochschule Zürich

Kementerian Kesihatan Malaysia

Ministry of Science and ICT, South Korea

Army Research Laboratory Center for Distributed Quantum In

Internet Alliance the Austrian Science Fund 7109 Samsung Science and Technol ogy Foundation under Project Number

Program Management Unit for Hu man Resources Institutional Development Research and Innovation

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference353 articles.

Cited by 185 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modern computing: Vision and challenges;Telematics and Informatics Reports;2024-03

2. Unraveling quantum computing system architectures: An extensive survey of cutting-edge paradigms;Information and Software Technology;2024-03

3. Ultrathin Magnesium‐Based Coating as an Efficient Oxygen Barrier for Superconducting Circuit Materials;Advanced Materials;2024-02-02

4. Quantum Computing AI;Applications and Principles of Quantum Computing;2024-01-31

5. Calculating the many-body density of states on a digital quantum computer;Physical Review Research;2024-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3