Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ

Author:

Martin Raoul12ORCID,Qi Tiancong34ORCID,Zhang Haibo3ORCID,Liu Furong5ORCID,King Miles5,Toth Claire6ORCID,Nogales Eva2678ORCID,Staskawicz Brian J.45ORCID

Affiliation:

1. Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA.

2. QB3, University of California, Berkeley, CA 94720, USA.

3. Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.

4. Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA.

5. Innovative Genomics Institute, University of California, Berkeley, CA 94720 USA.

6. Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA.

7. Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.

8. Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA.

Abstract

Tetrameric immune receptors Nucleotide-binding/leucine-rich repeat (NLR) immune receptors detect pathogen effectors and trigger a plant's immune response. Two groups have now defined the structures of two NLRs that carry Toll-like interleukin-1 receptor (TIR) domains (TIR-NLRs) (see the Perspective by Tian and Li). Ma et al. studied the Arabidopsis thaliana TIR-NLR RPP1 (recognition of Peronospora parasitica 1) and its response to effectors from an oomycete pathogen. Martin et al. studied the Nicotiana benthamiana TIR-NLR ROQ1 (recognition of XopQ 1) and its response to the Xanthomonas effector. Both groups found that these TIR-NLRs formed tetramers that, when activated by binding to the pathogen effector, exposed the active site of a nicotinamide adenine dinucleoside (NAD) hydrolase. Thus, recognition of the pathogen effector initiates NAD hydrolysis and begins the immune response. Science , this issue p. eabe3069 , p. eabd9993 ; see also p. 1163

Funder

Howard Hughes Medical Institute

IGI Director’s Fund

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3