Significant Acidification in Major Chinese Croplands

Author:

Guo J. H.1,Liu X. J.1,Zhang Y.1,Shen J. L.1,Han W. X.1,Zhang W. F.1,Christie P.12,Goulding K. W. T.3,Vitousek P. M.4,Zhang F. S.1

Affiliation:

1. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.

2. Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK.

3. Department of Soil Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK.

4. Department of Biology, Stanford University, Stanford, CA 94305, USA.

Abstract

Cropland Acidification in China China is experiencing increasing problems with acid rain, groundwater pollution, and nitrous oxide emissions. Rapid development of industry and transportation has accelerated nitrate (N) emissions to the atmosphere. Consequently, soil degradation, water shortage, and pollution, in addition to atmospheric quality decline are becoming major public concerns across China. Since the 1990s, China has become both the largest consumer of chemical N fertilizers and the highest cereal producer in the world, which has consequences for arable soil acidification. Guo et al. (p. 1008 , published online 11 February) present a meta-analysis of a regional acidification phenomenon in Chinese arable soils that is largely associated with higher N fertilization and higher crop production. Such large-scale soil acidification is likely to threaten the sustainability of agriculture and affect the biogeochemical cycles of nutrients and also toxic elements in soils.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3