Stable and uniform self-assembled organic diradical molecules for perovskite photovoltaics

Author:

Wu Wenping12ORCID,Gao Han3ORCID,Jia Lingbo4ORCID,Li Yuan5ORCID,Zhang Dezhong1ORCID,Zhan Hongmei1ORCID,Xu Jianan3ORCID,Li Binhe1ORCID,Geng Ziran1ORCID,Cheng Yanxiang1ORCID,Tong Hui1ORCID,Pan Yanxiong1ORCID,Liu Jun1ORCID,He Yongcai4ORCID,Xu Xixiang4ORCID,Li Zhenguo4ORCID,He Bo4ORCID,Zhou Min3ORCID,Wang Lixiang1ORCID,Qin Chuanjiang12ORCID

Affiliation:

1. State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.

2. School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China.

3. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.

4. LONGi Central R&D Institute, LONGi Green Energy Technology Co., Xi’an, China.

5. Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China.

Abstract

Organic self-assembled molecules (SAMs), which are widely used in perovskite solar cells (PSCs), should exhibit enhanced performance to support the ongoing advancement of perovskite photovoltaics. We designed diradical SAMs through a coplanar conjugation of a donor-acceptor strategy to facilitate hole transport across the SAMs. The diradical SAMs exhibited high photothermal and electrochemical stability as well as improved assembly uniformity and large-area solution processability attributed to molecular steric hindrance design. We used an advanced scanning electrochemical cell microscopy–thin-layer cyclic voltammetry technique to accurately determine the carrier transfer rate, stability, and assembly properties of the SAMs. Ultimately, the efficiencies of the PSCs exceeded 26.3%, minimodules (10.05 cm 2 ) reached 23.6%, and perovskite-silicon tandem devices (1 cm 2 ) surpassed 34.2%. The PSCs maintained >97% after 2000 hours tracking at 45°C.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3