Fast-spiking, parvalbumin + GABAergic interneurons: From cellular design to microcircuit function

Author:

Hu Hua1,Gan Jian1,Jonas Peter1

Affiliation:

1. IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria.

Abstract

Background Neuronal networks in the brain include glutamatergic principal neurons and GABAergic interneurons (GABA, γ-aminobutyric acid). The latter may be a minority cell type, but they are vital for normal brain function because they regulate the activity of principal neurons. If interneuron function is impaired, higher brain function can be damaged and seizures may result. The fast-spiking, parvalbumin-positive interneurons (PV + interneurons) are readily characterized and, consequently, have been adopted as a research model for systematic and quantitative investigations. These cells contribute to feedback and feedforward inhibition and are critically involved in the generation of network oscillations. They can convert an excitatory input signal into an inhibitory output signal within a millisecond, but it is unclear how these signaling properties are implemented at the molecular and cellular levels, nor how PV + interneurons shape complex network functions. Advances Recent work sheds light on the subcellular signaling properties of PV + interneurons. PV + cells show a high degree of polarity. The weakly excitable dendrites allow PV + interneurons to sample activity in the surrounding network, whereas the highly excitable axons enable analog-to-digital conversion and fast propagation of the digital signal to a large number of target cells. Additionally, tight coupling of Ca 2+ channels and release sensors at GABAergic output synapses increases the efficacy and speed of the inhibitory output. Recent results also provide a better understanding of how PV + interneurons operate in neuronal networks. Not only are PV + interneurons involved in basic microcircuit functions, such as feedforward and feedback inhibition or gamma-frequency oscillations, but they also play a role in complex network operations, including expansion of dynamic activity range, pattern separation, modulation of place and grid field shapes, phase precession, and gain modulation of sensory responses. Thus, PV + interneurons are critically involved in advanced computations in microcircuits and neuronal networks. Outlook Parvalbumin-expressing interneurons may also play a key role in numerous brain diseases. These include epilepsy, but also complex psychiatric diseases such as schizophrenia. Thus, PV + interneurons may become important therapeutic targets in the future. However, much needs to be learned about the basic function of these interneurons before clinical neuroscientists will have a chance to successfully use PV + interneurons for therapeutic purposes.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference134 articles.

1. Interneurons of the hippocampus

2. Quantitative analysis of GABA-like-immunoreactive and parvalbumin-containing neurons in the CA1 region of the rat hippocampus using a stereological method, the disector

3. Distribution of GABAergic synapses and their targets in the dentate gyrus of rat: A quantitative immunoelectron microscopic analysis;Halasy K.;J. Hirnforsch.,1993

4. G. Westbrook “Seizures and epilepsy ” in Principles of Neural Science E. Kandel J. H. Schwartz T. M. Jessell S. Siegelbaum A. J. Hudspeth Eds. (McGraw-Hill New York 2013) pp. 1116–1139.

5. Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3