PDZ Domain Proteins: Plug and Play!

Author:

Nourry Claire1,Grant Seth G. N.2,Borg Jean-Paul1

Affiliation:

1. U119 INSERM and Institut Paoli-Calmettes, Laboratory of Molecular Pharmacology, 27 Boulevard Leï Roure, 13009 Marseille, France

2. Centre for Neuroscience Research, Division of Neuroscience, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK.

Abstract

Protein-protein interactions are key elements in building functional protein complexes. Among the plethora of domains identified during the last 10 years, PDZ domains are one of the most commonly found protein-protein interaction domains in organisms from bacteria to humans. Although they may be the sole protein interaction domain within a cytoplasmic protein, they are most often found in combination with other protein interaction domains (for instance, SH3, PTB, WW) participating in complexes that facilitate signaling or determine the localization of receptors. Diversity of PDZ-containing protein function is provided by the large number of PDZ proteins that Mother Nature has distributed in the genome and implicates this protein family in the wiring of a huge number of molecules in molecular networks from the plasma membrane to the nucleus. Although at first sight their binding specificity appeared rather monotonous, involving only binding to the carboxyl-terminus of various proteins, it is now recognized that PDZ domains interact with greater versatility through PDZ-PDZ domain interaction; they bind to internal peptide sequences and even to lipids. Furthermore, PDZ domain-mediated interactions can sometimes be modulated in a dynamic way through target phosphorylation. In this review, we attempt to describe the structural basis of PDZ domain recognition and to give some functional insights into their role in the scaffolding of protein complexes implicated in normal and pathological biological processes.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

Reference114 articles.

1. The rat brain postsynaptic density fraction contains a homolog of the drosophila discs-large tumor suppressor protein

2. Single-letter abbreviations for the amino acid residues are as follows: A Ala; C Cys; D Asp; E Glu; F Phe; G Gly; H His; I Ile; K Lys; L Leu; M Met; N Asn; P Pro; Q Gln; R Arg; S Ser; T Thr; V Val; W Trp; Y Tyr; and X any amino acid.

3. P. J. Bryant, K. L. Watson, R. W. Justice, D. F. Woods, Tumor suppressor genes encoding proteins required for cell interactions and signal transduction in Drosophila. Dev. Suppl. 1993, 239-249 (1993).

4. Origin of PDZ (DHR, GLGF) domains

5. See http://smart.embl-heidelberg.de/.

Cited by 179 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3