Biased bivariate correlations in combined survey data measured with different instruments

Author:

Singh Ranjit K.

Abstract

Social scientists increasingly form composite datasets using data from different survey programs, which often use different single-question instruments to measure the same latent construct. This creates an obstacle when we want to run analyses using the combined data, since the scores measured with different instruments are not necessarily comparable. In this paper, we explore one consequence of such comparability problems. Specifically, we examine the case where instruments measuring the same construct have different item difficulties. This means if we applied the instruments to the same population, we would get different mean responses. If such mean differences are not mitigated before combining data, we introduce a mean bias into our composite data. Such mean bias has direct consequences for analyses based on the combined data. In data drawn from the same population, mean bias introduces error variance. In data drawn from different populations it would bias or even invert true population differences. However, in this paper I demonstrate that mean bias can also bias bivariate correlations if one or both variables in a composite dataset are subject to mean bias. If differences in item difficulty are not mitigated before combining data, we introduce a variant of Simpson’s paradox into our data: The bivariate correlation in each source survey might differ substantially from the correlation in the composite dataset. In a set of systematic simulations, I demonstrate this correlation bias effect and show how it changes depending on the mean biases in each variable and the strength of the underlying true correlation.

Publisher

Leibniz Institute for Psychology (ZPID)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3