Noise as an Extrinsic Variable in the Animal Research Facility

Author:

Turner Jeremy G1,Manker John R1

Affiliation:

1. Turner Scientific Monitoring, Jacksonville, Illinois

Abstract

Animal research facilities are noisy environments. The high air change rates required in animal housing spaces tend to create higher noise levels from the heating and cooling systems. Housing rooms are typically constructed of hard wall material that is easily cleaned but simultaneously highly reverberant, meaning that the sound cannot be controlled/attenuated so the sounds that are generated bounce around the room uncontrolled. (Soft, sound-absorbing surfaces generally cannot be used in animal facilities because they collect microbes; various wall surface features and sound control panel options are available, although rarely used.) In addition, many of our husbandry tasks such as cage changing, animal health checks, cleaning, and transporting animals produce high levels of noise. Finally, much of the equipment we have increasingly employed in animal housing spaces, such as ventilated caging motors, biosafety, or procedure cabinets, can generate high levels of background noise, including ultrasound. These and many additional factors conspire to create an acoustic environment that is neither naturalistic nor conducive to a stress-free environment. The acoustic variability both within and between institutions can serve as an enormous confounder for research studies and a threat to our ability to reproduce studies over time and between research laboratories. By gaining a better appreciation for the acoustic variables, paired with transparency in reporting the levels, we might be able to gain a better understanding of their impacts and thereby gain some level of control over such acoustic variables in the animal housing space. The result of this could improve both animal welfare and study reproducibility, helping to address our 3Rs goals of Replacement, Reduction, and Refinement in the animal biomedical research enterprise.

Publisher

American Association for Laboratory Animal Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3