Optical properties of Cu2ZnSnS4 and Cu2CdSnS4 quaternary compounds

Author:

,BATIR V.,ZALAMAI V.,

Abstract

Nowadays, the efficiency of Cu2ZnSnS4 (CZTS) thin-film solar cells is still limited by various factors such as: electronic disorder, secondary phases and the presence of antisite defects. In order to avoid this limitations, the Zn substitution by heavier atoms like Cd was proposed, as it may inhibit the formation of antisite defects, thereby increasing the minority carrier lifetime and reducing electronic disorder in the system. Thus, the main goal of this work was to investigate the optical properties of Cu2ZnSnS4 (CZTS) and Cu2CdSnS4 (CCTS) quaternary compounds. Hence, the reflectance, transmittance and photoluminescence spectra were recorded over a wide temperature range (from 10 to 300 K). As a result, for the CZTS sample, the optical band gap energy at room temperature was found to be equal to 1.46 eV. Also, reflectance and photoluminescence spectra at 15 K revealed essential details about the excitonic behavior in the CCTS sample, in particular for the A type exciton, with ground and excited states (n A = 1 and n A = 2) observed. The binding energy for the A type exciton was found to be 64 meV, leading to an estimated band gap width (Eg) of about 1.39 eV. In addition, at higher energies, spectra revealed maxima associated with the ground and excited states (n B = 1 and n B = 2) of the B type exciton, with an estimated binding energy of 75 meV and a continuum energy of about 1.51 eV.

Publisher

Editura Academiei Romane

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3