Immune Recognition of Heat Shock Proteins Provides a Molecular Basis for the “Hygiene Hypothesis” Linking High Prevalence of Immune Disorders to Lack of Cell Stress Eliciting Events

Author:

van Eden W.1

Affiliation:

1. Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands

Abstract

A modern interpretation of the hygiene hypothesis proposes the so-called “old friends” to trigger tolerogenic responses through innate receptors of dendritic cells (DC). Tolerogenic DCs would drive regulatory T-cell polarization through induction of old-friend-specific Treg. In the tissues of the gut that are besieged by our old friends, these cells are held to produce a continuous bystander regulation. However, such local bystander regulation in the gut may be difficult to reconcile with suppression of responses to airway allergens or autoimmune antigens present in distant body tissues. Alternatively, the regulatory Tregs may be triggered through recognition of stress proteins or heat shock proteins (HSP). Microbial HSP are immunodominant and evolutionary conserved with homologs present in mammalian cells. Microbial HSP are now known to induce Tregs that cross-recognize mammalian HSP. In addition, microbial exposures, both friendly and nonfriendly, cause cell stress and, consequently, HSP upregulation in host cells. Also such upregulated HSP can activate HSP-specific Tregs that target the upregulated HSP at sites of inflammatory stress wherever in our body. Under inflammatory conditions, cell stress-associated HSP are abundant and therefore easy targets for cognate T-cell interactions. Herewith, they provide a molecular basis for the hygiene hypothesis.

Publisher

Hindawi Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3