Characterization of a novel variant in the HR1 domain of MFN2 in a patient with ataxia, optic atrophy and sensorineural hearing loss

Author:

Sharma Govinda,Zaman Mashiat,Sabouny Rasha,Joel Matthew,Martens KristinaORCID,Martino Davide,de Koning A.P. Jason,Pfeffer GeraldORCID,Shutt Timothy E.ORCID

Abstract

Background: Pathogenic variants in MFN2 cause Charcot-Marie-Tooth disease (CMT) type 2A (CMT2A) and are the leading cause of the axonal subtypes of CMT. CMT2A is characterized by predominantly distal motor weakness and muscle atrophy, with highly variable severity and onset age. Notably, some MFN2 variants can also lead to other phenotypes such as optic atrophy, hearing loss and lipodystrophy. Despite the clear link between MFN2 and CMT2A, our mechanistic understanding of how dysfunction of the MFN2 protein causes human disease pathologies remains incomplete. This lack of understanding is due in part to the multiple cellular roles of MFN2. Though initially characterized for its role in mediating mitochondrial fusion, MFN2 also plays important roles in mediating interactions between mitochondria and other organelles, such as the endoplasmic reticulum and lipid droplets. Additionally, MFN2 is also important for mitochondrial transport, mitochondrial autophagy, and has even been implicated in lipid transfer. Though over 100 pathogenic MFN2 variants have been described to date, only a few have been characterized functionally, and even then, often only for one or two functions. Method: Several MFN2-mediated functions were characterized in fibroblast cells from a patient presenting with cerebellar ataxia, deafness, blindness, and diffuse cerebral and cerebellar atrophy, who harbours a novel homozygous MFN2 variant, D414V, which is found in a region of the HR1 domain of MFN2 where few pathogenic variants occur. Results: We found evidence for impairment of several MFN2-mediated functions. Consistent with reduced mitochondrial fusion, patient fibroblasts exhibited more fragmented mitochondrial networks and had reduced mtDNA copy number. Additionally, patient fibroblasts had reduced oxygen consumption, fewer mitochondrial-ER contacts, and altered lipid droplets that displayed an unusual perinuclear distribution. Conclusion: Overall, this work characterizes D414V as a novel variant in MFN2 and expands the phenotypic presentation of MFN2 variants to include cerebellar ataxia.

Funder

Canadian Institutes of Health Research

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3