Engineering an Escherichia coli strain for enhanced production of flavonoids derived from pinocembrin

Author:

Hanko Erik Kurt Reinhard1,Robinson Christopher James1,Bhanot Sahara1,Jervis Adrian John1,Scrutton Nigel Shaun1

Affiliation:

1. University of Manchester

Abstract

Abstract

Background Flavonoids are a structurally diverse group of secondary metabolites, predominantly produced by plants, which include a range of compounds with pharmacological importance. Pinocembrin is a key branch point intermediate in the biosynthesis of a wide range of flavonoid subclasses. However, replicating the biosynthesis of these structurally diverse molecules in heterologous microbial cell factories has encountered challenges, in particular the modest pinocembrin titres achieved to date. In this study, we combined genome engineering and enzyme candidate screening to significantly enhance the production of pinocembrin and its derivatives, including chrysin, pinostrobin, pinobanksin, and galangin, in Escherichia coli. Results By implementing a combination of established strain engineering strategies aimed at enhancing the supply of the building blocks phenylalanine and malonyl-CoA, we constructed an E. coli chassis capable of accumulating 353 mg/L pinocembrin from glycerol, without the need for precursor supplementation or the fatty acid biosynthesis inhibitor cerulenin. This chassis was subsequently employed for the production of chrysin, pinostrobin, pinobanksin, and galangin. Through an enzyme candidate screening process involving eight type-1 and five type-2 flavone synthases (FNS), we identified Petroselinum crispum FNSI as the top candidate, producing 82 mg/L chrysin. Similarly, from a panel of five flavonoid 7-O-methyltransferases (7-OMT), we found pinocembrin 7-OMT from Eucalyptus nitida to yield 153 mg/L pinostrobin. To produce pinobanksin, we screened seven enzyme candidates exhibiting flavanone 3-hydroxylase (F3H) or F3H/flavonol synthase (FLS) activity, with the bifunctional F3H/FLS enzyme from Glycine max being the top performer, achieving a pinobanksin titre of 12.6 mg/L. Lastly, by utilising a combinatorial library of plasmids encoding G. max F3H and Citrus unshiu FLS, we obtained a maximum galangin titre of 18.2 mg/L. Conclusion Through the integration of microbial chassis engineering and screening of enzyme candidates, we considerably increased the production levels of microbially synthesised pinocembrin, chrysin, pinostrobin, pinobanksin, and galangin. With the introduction of additional chassis modifications geared towards improving cofactor supply and regeneration, as well as alleviating potential toxic effects of intermediates and end products, we anticipate further enhancements in the yields of these pinocembrin derivatives, potentially enabling greater diversification in microbial hosts.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3