Development of the production technology of a new highly effective thermal grease

Author:

Shishkin Roman1ORCID

Affiliation:

1. Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences: FGBUN Institut himii tverdogo tela Ural'skogo otdelenia Rossijskoj akademii nauk

Abstract

Abstract A rapid increase in the power of microelectronic devices, along with a reduction in their size, leads to a rapid growth in the density of dissipated heat flows. As a result, thermal management becomes a crucial factor for maintaining the stable uninterrupted operation of microelectronic devices. Stricter requirements for thermal interface materials (TIMs) make it necessary to optimize their production technology. A solution-based technology for obtaining grease with enhanced thermophysical properties is proposed. It has been shown that heat treatment of a mechanical mixture of aluminum nitride (AlN) and graphite (C) (1:1 by weight) in a vacuum at temperatures of 250–350 ° C makes it possible to clean the surface of the particles from moisture and organic impurities, which leads to an increase in the thermal conductivity of the materials obtained. It was revealed that the best solvent at the processing stage is AlN:C silane is ethanol due to the high chemical similarity with silane surfactant. In contrast, when introducing particles into polydimethylsiloxane (PDMS), the highest thermal conductivity results were achieved with acetone as a solvent. The use of ultrasonic treatment of the filler, when introduced into the polymer matrix, was considered. It was shown that the optimal duration is 10 to 15 minutes, depending on the surfactant. The resulting thermal pastes have sufficient thermal conductivity (up to 2.25 W/ (m·K)) and high thermal stability up to the flash point of PDMS (340°C).

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3