A general strategy to significantly reduce thermal expansion and achieve high mechanical properties in iron alloys

Author:

Chen Jun1ORCID,Lu Hao1,Zhou Chang1,Song Yuzhu,zhang Yuanpeng2ORCID,Wu Yiming3,Long Feixiang1,Yao Yonghao1,Hao Jiazheng4,Chen Yan2ORCID,Yu Dunji5,Schwiedrzik Jakob6ORCID,An Ke2ORCID,He Lunhua7ORCID,Lu Zhaoping1ORCID

Affiliation:

1. University of Science and Technology Beijing

2. Oak Ridge National Laboratory

3. Swiss Federal Laboratories for Materials Science and Technology

4. Spallation Neutron Source Science Center

5. ORNL

6. EMPA, Swiss Federal Laboratories for Material Science and Technology, Laboratory of Mechanics of Materials and Nanostructures, Feuerwerkerstr. 39, CH-3602 Thun, Switzerland

7. Institute of Physics, Chinese Academy of Sciences

Abstract

Abstract Iron alloys, including steel and magnetic functional materials, are widely used in capital construction, manufacturing, electromagnetic technology, etc. However, they face the long-standing challenge of high coefficient of thermal expansion (CTE), limiting the applications in high-precision fields. This work proposes a general strategy involving the in-situ formation of a nano-scale lamellar/labyrinthine negative thermal expansion (NTE) phase within the iron matrix to tackle this problem. For example, a model Fe alloy, Fe-Zr10-Nb6, was synthesized and its CTE is reduced to approximately half of the iron. Meanwhile, the alloy possesses an excellent strength-plasticity combination of 1.5 GPa (compressive strength) and 17.5% (ultimate strain), which outperforms other low thermal expansion (LTE) metallic materials. The magnetovolume effect of the NTE phase is deemed to counteract the positive thermal expansion in iron. The high stress-carrying hard NTE phase and the tough matrix synergistically contribute to the superior mechanical properties. The interaction between the slip of lamellar microstructure and the slip-hindering of labyrinthine microstructure further enhances the strength-plasticity combination. This work shows the promise of offering a universal method to produce LTE iron alloys with outstanding mechanical properties.

Publisher

Research Square Platform LLC

Reference69 articles.

1. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation;Jiang S;Nature,2017

2. Facile route to bulk ultrafine-grain steels for high strength and ductility;Gao J;Nature,2021

3. A mechanically strong and ductile soft magnet with extremely low coercivity;Han L;Nature,2022

4. A Novel Soft-Magnetic B2‐Based Multiprincipal‐Element Alloy with a Uniform Distribution of Coherent Body‐Centered‐Cubic Nanoprecipitates;Ma Y;Adv Mater,2021

5. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications;Chen J;Chem Soc Rev,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3