HMGB1 Neuroimmune Signaling and REST-G9a Gene Repression Contribute to Ethanol-induced Reversible Suppression of the Cholinergic Neuron Phenotype

Author:

Vetreno Ryan1,Fisher Rachael,Qin Liya,Crews Fulton1ORCID

Affiliation:

1. University of North Carolina at Chapel Hill

Abstract

Abstract Adolescent binge drinking increases Toll-like receptor 4 (TLR4), receptor for advanced glycation end products (RAGE), the endogenous TLR4/RAGE agonist high-mobility group box 1 (HMGB1), and proinflammatory neuroimmune signaling in the adult basal forebrain in association with persistent reductions of basal forebrain cholinergic neurons (BFCNs). In vivo preclinical adolescent intermittent ethanol (AIE) studies find anti-inflammatory interventions post-AIE reverse the HMGB1-TLR4/RAGE neuroimmune signaling and loss of BFCNs in adulthood, suggesting proinflammatory signaling causes epigenetic repression of the cholinergic phenotype. Reversible loss of BFCN phenotype in vivo is linked to increased repressive histone 3 lysine 9 dimethylation (H3K9me2) occupancy at cholinergic gene promoters, and HMGB1-TLR4/RAGE proinflammatory signaling is linked to epigenetic repression of the cholinergic phenotype. Using an ex vivo basal forebrain slice culture (FSC) model, we report EtOH recapitulates the in vivo AIE-induced loss of ChAT + IR BFCNs, somal shrinkage of the remaining ChAT + neurons, and reduction of BFCN phenotype genes. Ex vivo targeted inhibition of EtOH-induced proinflammatory HMGB1 blocked ChAT + IR loss while disulfide HMBG1-TLR4 and fully reduced HMGB1-RAGE signaling decreased ChAT + IR BFCNs. EtOH increased expression of the transcriptional repressor RE1-silencing transcription factor (REST) and the H3K9 methyltransferase G9a that was accompanied by increased repressive H3K9me2 and REST occupancy at promoter regions of the BFCN phenotype genes Chat and Trka as well as the lineage transcription factor Lhx8. REST expression is similarly increased in the post-mortem human basal forebrain of individuals with alcohol use disorder, which is negatively correlated with ChAT expression. Administration of REST siRNA and the G9a inhibitor UNC0642 blocked and reversed the EtOH-induced loss of ChAT + IR BFCNs, directly linking REST-G9a transcriptional repression to suppression of the cholinergic neuron phenotype. These data suggest that EtOH induces a novel neuroplastic process involving neuroimmune signaling and transcriptional epigenetic gene repression resulting in the reversible suppression of the cholinergic neuron phenotype.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3