A2B adenosine receptor-triggered intracellular calcium mobilization: Cell type-dependent involvement of Gi, Gq, Gs proteins and protein kinase C

Author:

Gao Zhan-Guo1,Gao Ray R.1,Meyer Clayton K.1,Jacobson Kenneth A.1

Affiliation:

1. NIDDK, National Institutes of Health

Abstract

Abstract

Activation of PLCβ enzymes by Giβγ and Gαq/11 proteins is a common mechanism to trigger cytosolic Ca2+ increase. We and others reported that Gαq/11 inhibitor FR900358 (FR) can inhibit both and Gαq- and, surprisingly, Giβγ-mediated intracellular Ca2+ mobilization. Thus, the Gαi-Gβγ-PLCβ-Ca2+ signaling axis depends entirely on the presence of active Gαq, which reasonably explained FR-inhibited Giβγ-induced Ca2+ release. However, the conclusion that Giβγ signaling is controlled by Gαq derives mostly from HEK293 cells. Here we show that indeed in HEK293 cells both Gαq/11 siRNA and Gαq/11 inhibitors diminished Ca2+ increase triggered by native Gq-coupled P2Y1 receptors, or by transfected Gi-coupled A1- or Gs-coupled A2B adenosine receptors (ARs). However, in T24 bladder cancer cells, Gi inhibitor PTX, but not Gαq/11 inhibitors, FR, YM254890 (YM) or Gq/11 siRNA, inhibited Ca2+ increase triggered by native A2BAR activation. Simultaneous inactivation of Gi and Gs further suppressed A2BAR-triggered Ca2+ increase in T24 cells. The Gαq/11 inhibitor YM fully and partially inhibited endogenous P2Y1- and β2-adrenergic receptor-induced Ca2+ increase in T24 cells, respectively. PKC activator PMA partially diminished A2BAR-triggered but completely diminished β2-adrenergic receptor-triggered Ca2+ increase in T24 cells. Neither β-arrestin1 nor β-arrestin2 siRNA affected A2BAR-mediated Ca2+ increase. Unlike in T24 cells, YM inhibited native A2BAR-triggered calcium mobilization in MDA-MB-231 breast cancer cells. Thus, Gαq/11 is vital for Ca2+ increase in some cell types, but Giβγ-mediated Ca2+ signaling can be Gαq/11-dependent or independent based on cell type and receptor activated. Besides G proteins, PKC also modulates cytosolic Ca2+ increase depending on cell type and receptor.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3