YOLO-ESFM:A Multi-scale YOLO Algorithm for Sea Surface Object Detection.

Author:

Yan Fei1,Chen Keyu1,Cheng En1,Qu Puhui1,Ma Jikang1

Affiliation:

1. Xiamen University

Abstract

Abstract

Environmental perception and object detection are pivotalresearch topics in the marine domain. The sea surface presents unique challenges, including harsh weather conditions, wave interference, and multi-scale targets, often resulting in suboptimal detection results. To address these issues, we present an innovative solution: integrating the Efficient Scale Fusion Module (ESFM) into the advanced YOLO architecture, resulting in the enhanced model, YOLO-ESFM. The ESFM serves as both the backbone and detection head of the network, significantly improving performance compared to the baseline models in YOLOv5s, YOLOv7-tiny, and YOLOv7. Furthermore, to tackle the limitations of the CIOU in YOLOv7, we introduce an improved method, ZIOU, which has been rigorously evaluated and proven effective on the Sea Surface Target Dataset. Comparative studies demonstrate that YOLO-ESFM not only maintains efficiency in terms of parameters and FLOPs but also surpasses YOLOv7 in detection accuracy on both the Sea Surface Target Dataset and the PASCAL VOC 07+12 Dataset.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3