Oxidative stress induces ferroptosis in tendon stem cells by regulating mitophagy through cGAS-STING pathway during tendinopathy

Author:

Zheng shizhong1,gao yuanyuan2,Sun wenshuang2,Wang junrui1,Zhao danli3,Tian haoyuan1,Qiu yangling1,Ji shufan1,Wang shuqi1,Fu qiuyu1,zhang feng1,Zhang zili1,Wang feixia1,Shao jiangjuan1,Meng jia2

Affiliation:

1. Nanjing University of Chinese Medicine

2. Department of Orthopaedics, Jinling Hospital, Nanjing University of Chinese Medicine

3. NanTong Health college of Jiangsu Province

Abstract

Abstract Tendinopathy is one of the most prevalent sports injury diseases in orthopedics. However, there is no effective treatment or medicine. Recently, the discovery of tendon stem cells (TSCs) provides a new perspective to find new therapeutic methods for Tendinopathy. Studies have shown that oxidative stress will inevitably cause TSCs injury during tendinopathy, but the mechanism has not been fully elucidated. Here, we report the oxidative damage of TSCs induced by H2O2 via ferroptosis, as well, treatment with H2O2 raised the proportion of mitochondria engulfed by autophagosomes in TSCs. The suppression of mitophagy by Mdivi-1 significantly attenuates the H2O2-induced ferroptosis in TSCs. Mechanically, H2O2 actives the cGAS-STING pathway, which can regulate the level of mitophagy. Interfering with cGAS could impair mitophagy and the classical ferroptotic events. In the rat model of tendinopathy, interference of cGAS could relieve tendon injury by inhibiting ferroptosis. Overall, these results provided novel implications to reveal the molecular mechanism of tendinopathy, by which pointed to cGAS as a potential therapeutic target for the treatment of tendinopathy.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3