Real-Time Spatiotemporal Denoising Volumetric Rendering in Three-Dimensional Visualization of Puncturing Navigation

Author:

Li Jing1,Zhou Jie1,Shen Nanyan1,Li Yingjie1,Song Ping1,Wang Yan1

Affiliation:

1. Shanghai University

Abstract

Abstract

In medical diagnosis and surgical treatment, particularly in tumor puncturing surgeries, the importance of three-dimensional visualization of medical data is increasingly recognized. Traditional two-dimensional imaging techniques are limited in spatial and depth perception. This study introduces a novel real-time spatiotemporal denoising volumetric rendering technique aimed at enhancing three-dimensional visualization in puncturing navigation systems. By analyzing existing volumetric rendering methods, a spatiotemporal filtering approach is proposed. This approach filters images rendered with one sample per pixel by calculating inter-frame motion vectors in the time domain and utilizing auxiliary features in the spatial domain. It effectively reduces the noise from Monte Carlo estimations and enhances the clarity of three-dimensional organ structures. This technique achieves real-time performance exceeding 30 Hz on commercial-grade Graphics Processing Units (GPUs). The real-time spatiotemporal denoising volumetric rendering significantly enhances the three-dimensional visualization quality in puncturing navigation systems, achieving a balance between high-quality rendering and real-time performance, meeting clinical needs. This technology also has broad application potential in medical training, surgical simulation, and remote collaboration.

Publisher

Research Square Platform LLC

Reference45 articles.

1. A Review of Three-Dimensional Medical Image Visualization;Zhou L;Health Data Science,2022

2. A fully automatic surgical registration method for percutaneous abdominal puncture surgical navigation;Li J;Computers in Biology and Medicine,2021

3. Baseer I, Valverde I, Moustafa AH, et al (2023) Evaluation of cinematic volume rendering open-source and commercial solutions for the exploration of congenital heart data

4. Neural Denoising for Path Tracing of Medical Volumetric Data;Hofmann N;Proc ACM Comput Graph Interact Tech,2020

5. Neuhauser C, Westermann R (2023) Transfer Function Optimization for Comparative Volume Rendering. arXiv preprint arXiv:230605885

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3