Amphiphilic fibers based on polypropylene-g-poly(acrylic acid) by sequential photo-induced metal-free ATRP and electrospinning

Author:

Acik Gokhan1

Affiliation:

1. Arda Vocational School, Trakya University

Abstract

Abstract Undoubtedly, with the increasing awareness of the scientific community and the public, current trends are directing research to implement effective and combined yet nature friendly methodologies. Due to advantages such as adaptability and versatility, the combination of electrospinning and light is increasingly intriguing. This study proposes a new strategy for producing amphiphilic fibers from graft copolymer of polypropylene (PP) and poly (acrylic acid) (FPP-g-PAA). The first step includes the synthesis of copolymer containing PP main chain and poly (tertiary butyl acrylate) pendant groups (PP-g-PAA) via photo-induced metal-free ATRP (PIMF-ATRP) of tertiary butyl acrylate (t-BA) monomer with chlorinated polypropylene (PP-Cl) as a macro photo-initiator followed by acidolysis of t-BA units to acrylic acid moieties. In the second step, the PP-g-PAA is successful electrospun to fabricate the ultimate amphiphilic fibers. The chemical steps are monitored and confirmed by Fourier-transform infrared (FT-IR) and proton magnetic resonance (1H-NMR) spectroscopies, and gel permeation chromatography (GPC). Following the structural characterization, morphological and wetting properties are systematically determined with scanning electron microscopy (SEM) and water contact angle (WCA) measurement by depending on surface characteristics of the samples. Thermal behaviour of precursors and synthesized electrospun fibers has also been evaluated and compared by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The SEM images display that the achieved fibers were smooth and circular with the average diameters ranging from 3.3 µm up to 3.9 µm. After WCA measurements, it was elucidated that the hydrophobic nature of electrospun PP-g-PtBA was transformed into amphiphilic structure by hydrolysis of PtBA pendant groups. The reported approach is very encouraging and expected to trigger further development for scientists preparing various types of amphiphilic polyolefin fiber based materials.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3