Meta-Prediction of Coronary Artery Disease Risk

Author:

Torkamani Ali1ORCID,Chen Shang-Fu1ORCID,Lee Sang Eun2,Sadaei Hossein1,Park Jun-Bean3,Khattab Ahmed1,Henegar Corneliu1,Wineinger Nathan4,Muse Evan5ORCID

Affiliation:

1. Scripps Research & Scripps Research Translational Institute

2. Asan Medical Center, University of Ulsan College of Medicine

3. Seoul National University Hospital

4. Scripps Research

5. Scripps Translational Science Institute, The Scripps Research Institute, Scripps Health

Abstract

Abstract Coronary artery disease (CAD) remains the leading cause of mortality and morbidity worldwide. Recent advances in large-scale genome-wide association studies have highlighted the potential of genetic risk, captured as polygenic risk scores (PRS), in clinical prevention. However, the current clinical utility of PRS models is limited to identifying high-risk populations based on the top percentiles of genetic susceptibility. While some studies have attempted integrative prediction using genetic and non-genetic factors, many of these studies have been cross-sectional and focused solely on risk stratification. Our primary objective in this study was to integrate unmodifiable (age / genetics) and modifiable (clinical / biometric) risk factors into a prospective prediction framework which also produces actionable and personalized risk estimates for the purpose of CAD prevention in a heterogenous adult population. Thus, we present an integrative, omnigenic, meta-prediction framework that effectively captures CAD risk subgroups, primarily distinguished by degree and nature of genetic risk, with distinct risk reduction profiles predicted from standard clinical interventions. Initial model development considered ~ 2,000 predictive features, including demographic data, lifestyle factors, physical measurements, laboratory tests, medication usage, diagnoses, and genetics. To power our meta-prediction approach, we stratified the UK Biobank into two primary cohorts: 1) a prevalent CAD cohort used to train baseline and prospective predictive models for contributing risk factors and diagnoses, and 2) an incident CAD cohort used to train the final CAD incident risk prediction model. The resultant 10-year incident CAD risk model is composed of 35 derived meta-features from models trained on the prevalent risk cohort, most of which are predicted baseline diagnoses with multiple embedded PRSs. This model achieved an AUC of 0.81 and macro-averaged F1-score of 0.65, outperforming standard clinical scores and prior integrative models. We further demonstrate that individualized risk reduction profiles can be derived from this model, with genetic risk mediating the degree of risk reduction achieved by standard clinical interventions.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3