Crosstalk between the JAK2 and TGF-β1 signaling pathways in scleroderma-related interstitial lung disease targeted by baricitinib

Author:

Wang Dandan1,Wei Yimei2,Xu Lulu3,Zhang Jie3ORCID

Affiliation:

1. Southwest Medical University

2. Chongqing Medical University

3. Chongqing City Third Hospital

Abstract

Abstract Background and objective: Systemic sclerosis (SSc) is an immune-mediated rheumatic disease characterized by fibrosis and vascular lesions. Interstitial lung disease (ILD) is an early complication of SSc and the main cause of death from SSc. Although baricitinib shows good efficacy in a variety of connective tissue diseases, its role in systemic sclerosis-related interstitial lung disease (SSc-ILD) is unclear. The objectiveof our study was to explore the effect and mechanism of baricitinib in SSc-ILD. Methods: We explored crosstalk between the JAK2 and TGF-β1 pathways. In vivo experiments, SSc-ILD mice model were constructed by subcutaneous injection of PBS or bleomycin (7.5 mg/kg) and intragastric administration of 0.5% CMC-Na or baricitinib (5 mg/kg) once every two days. We used ELISA, qRT‒PCR, western blotand immunofluorescence staining to evaluate the degree of fibrosis. In vitro experiments, we used TGF-β1 and baricitinib to stimulate human fetal lung fibroblasts (HFLs) and assessed protein expression by western blot. Results: The vivo experiments showed that baricitinib notably alleviated skin and lung fibrosis, decreased the concentration of pro-inflammatory factors and increased those of the anti-inflammatory factors. Baricitinib affected the expression of TGF-β1 and TβRI/II inhibitiing JAK2. In the vitro experiments, following the culture of HFLs with baricitinib or a STAT3 inhibitor for 48 h, the expression levels of TβRI/II decreased. Conversely, with successful inhibition of TGF-β receptors in HFLs, JAK2 protein expression decreased. Conclusions: Baricitinib attenuated bleomycin-induced skin and lung fibrosis in SSc-ILD micemodel by targeting JAK2 and regulating of the crosstalk between the JAK2 and TGF-β1 signaling pathways.

Publisher

Research Square Platform LLC

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3