Genetic diversity and evolution of rice centromeres

Author:

Wu Dongya1ORCID,Xie Lingjuan1,Huang Yujie1,Huang Wei,Shang Lianguang2,Sun Yanqing1,Chen Quanyu1ORCID,Bi Shuangtian3,Suo Mingyu1,Zhang Shiyu1,Yang Chentao4,Zheng Xiao-Ming5,Jin Weiwei3,Qian qian6ORCID,Fan Longjiang1ORCID

Affiliation:

1. Zhejiang University

2. Chinese Academy of Agricultural Sciences

3. China Agricultural University

4. BGI-Shenzhen

5. Institute of Crop Science, CAAS

6. China National Rice Research Institute

Abstract

Abstract

Understanding the mechanisms driving centromere evolution is crucial for deciphering eukaryotic evolution and speciation processes. Despite their widely recognized characteristics of conserved function in cell division, the centromeres have showed high diversity in composition and structure between species. The mechanism underlying this paradox remain poorly understood. Here, we assembled 67 high-quality rice genomes from Oryza AA group, encompassing both Asian and African rice species, and conducted an extensive analysis of over 800 nearly complete centromeres. Through de novoannotation of satellite sequences and employing a progressive compression strategy, we quantified the local homogenization and multi-layer nested structures of rice centromeres and found that genetic innovations in rice centromeres primarily arise from internal structural variations and retrotransposon insertions, along with a certain number of non-canonical satellite repeats (sati). Despite these rapid structural alterations, the single-base substitution rate in rice centromeres appears relatively lower compared to the chromosome arms. Contrary to the KARMA model for Arabidopsis centromere evolution, our model (RICE) suggests that centrophilic LTRs contribute to the decline of progenitor centromeres composed of satellite repeats, and facilitate the formation of evolutionary neo-centromeres, which are enriched with extended CENH3 binding regions beyond the native satellite arrays in plant genomes. In summary, this study provides novel insights into genomic divergence and reproductive barriers among rice species and subspecies, and advances our understanding of plant centromere evolution.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3