Circular RNA expression in ALS is progressively deregulated and tissue-dependent

Author:

García Leticia Moreno1ORCID,Moreno-Martínez Laura1,Torre Miriam de la1,Schoorlemmer Jon2,Macías-Redondo Sofía2,García-Redondo Alberto3,Osta Rosario1ORCID,Toivonen Janne Markus1,Calvo Ana Cristina1

Affiliation:

1. University of Zaragoza: Universidad de Zaragoza

2. IACS: Instituto Aragones de Ciencias de la Salud

3. Hospital Universitario Doce de Octubre: Hospital Universitario 12 de Octubre

Abstract

Abstract There is increasing evidence on the role of circular RNAs (circRNAs) in neuronal and muscular processes. Accordingly, their dysregulation is associated with neurodegenerative diseases and myopathies. We investigated circRNA expression in the central nervous system (CNS) and skeletal muscle, the two main tissues affected in amyotrophic lateral sclerosis (ALS). Based on circRNA sequencing analysis in spinal cord from ALS mice (SOD1G93A) followed by a literature search, 30 circRNAs potentially involved in ALS were tested. All selected circRNAs were downregulated in the SOD1G93A spinal cord, whereas only half of these were quantifiable and were generally upregulated in quadriceps muscle of SOD1G93A mice. Such tissue-dependent expression pattern was observed in both sexes and circRNA abundance in the spinal cord was higher than in the muscle, both in wild-type and in SOD1G93A mice. Finally, we assessed the 18 circRNAs with the largest expression differences and the highest degree of interspecies conservation in brain samples from sporadic ALS (sALS) patients and healthy controls. Similar to the mouse model, circRNA levels tended to decrease in the CNS of sALS patients. We conclude that the expression of circRNAs may be systematically altered in the two tissues most affected by ALS in a progressive and opposed manner. Although more detailed studies are warranted, circRNAs are potentially related to ALS etiopathogenesis and could possibly serve as future biomarkers, therapeutic targets, or customized therapeutic tools to modulate the pathology.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3