Optimizing Cervical Cancer Classification through Transfer Learning and Kernel Methods: Analyzing the Performance of Deep Gaussian Processes and Support Vector Machines on Pap smear Image Data

Author:

Ahishakiye Emmanuel1,Kanobe Fredrick1

Affiliation:

1. Kyambogo University

Abstract

Abstract

Background Cervical cancer is the fourth most frequent cancer in women worldwide. Even though cervical cancer deaths have decreased significantly in Western countries, low and middle-income countries account for nearly 90% of cervical cancer deaths. While Western countries are leveraging the powers of artificial intelligence (AI) in the health sector, most countries in sub-Saharan Africa are still lagging. In Uganda, cytologists manually analyze Pap smear images for the detection of cervical cancer, a process that is highly subjective, slow, and tedious. Machine learning (ML) algorithms have been used in the automated classification of cervical cancer. However, most of the MLs have overfitting limitations which limits their deployment, especially in the health sector where accurate predictions are needed. Methods In this study, we propose two kernel-based algorithms for automated detection of cervical cancer. These algorithms are (1) an optimized support vector machine (SVM), and (2) a deep Gaussian Process (DGP) model. The SVM model proposed uses an optimized radial basis kernel while the DGP model uses a hybrid kernel of periodic and local periodic kernel. Results Experimental results revealed accuracy of 100% and 99.48% for an optimized SVM model and DGP model respectively. Results on precision, recall, and F1 score were also reported. Conclusions The proposed models performed well on cervical cancer detection and classification, and therefore suitable for deployment. We plan to deploy our proposed models in a mobile application-based tool. The limitation of the study was the lack of access to high-performance computational resources.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3