Epigenetic Control of Hyperuricemia and Gout by Gene Writer DNMT1 and RNA Editor ADAR1: Mechanism of Gout and Amyloid Dissolution in Down Syndrome

Author:

Tyagi Suresh C.1,Smolenkova Irina1,Zheng Yuting1,Singh Mahavir1

Affiliation:

1. University of Louisville School of Medicine Louisville

Abstract

Abstract Although DNA methyltransferase 1 (DNMT1) and RNA editor; ADAR triplications exist in Down syndrome (DS), their specific roles remain unclear. DNMT methylates DNA, yielding S-adenosine homocysteine (SAH), subsequently converted to homocysteine (Hcy) and adenosine by S-adenosine homocysteine (Hcy) hydrolase (SAHH). ADAR converts adenosine to inosine and uric acid. We hypothesized that targeting epigenetic regulators and RNA editor, and inhibiting Hcy and adenosine, could alleviate DS phenotype including the congenital heart disease (CHD). DS and wild type mice were treated with epigallocatechin gallate (EG), inhibitor of Hcy and adenosine. Specific substrate gel zymography identified matrix metalloproteinases (MMPs)/A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) activities and MMP12/ADAMTS12 and MMP13/ADAMTS13 levels were assessed via gel zymography. Cardiac levels of DNMT1, ADAR, tissue inhibitor of metalloproteinase 1 (TIMP1), SAHH, and ten eleven translocator (TET2); hydroxy methylation; a gene eraser was measured. Calcium urate deposits in heart tissue suggested gout mechanism in DS. Robust amyloid fibers in DS mouse brain cortex were most likely dissolved by ADAMTS as its levels were elevated in tissues, with a corresponding decrease in TIMP1 in the EG group. It appears that triplication of down syndrome cell adhesion molecule (DSCAM) and cell adhesion molecule 1 (CAM1) fragment also help dissolve amyloid fibers, thus suggesting ADAMTS13/TIMP1 ratio could predict plaque dissolution. Our results indicate that cystathionine-β synthase (CBS) inhibitor as a potential therapy for amyloid dissolution.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3