Estimating real-world walking speed from a single wearable device: analytical pipeline, results and lessons learnt from the Mobilise-D technical validation study

Author:

Kirk Cameron1,Kuederle Arne2,Mico-Amigo M. Encarna1,Bonci Tecla3,Paraschiv-Ionescu Anisoara4,Ullrich Martin2,Soltani Abolfazl4,Gazit Eran5,Salis Francesca6,Alcock Lisa1,Aminian Kamiar7,Becker Clemens8,Bertuletti Stefano6,Brown Philip1,Buckley Ellen9,Cantu Alma1,Carsin Anne-Elie10,Caruso Marco11,Caulfield Brian12,Cereatti Andrea11,Chiari Lorenzo13,D'Ascanio Ilaria13,Garcia-Aymerich Judith14,Hansen Clint15,Hausdorff Jeffrey5,Hiden Hugo1,Hume Emily16,Keogh Alison12,Kluge Felix2,Koch Sarah14,Maetzler Walter17,Megaritis Dimitrios16,Mueller Arne18,Niessen Martijn19,Palmerini Luca13,Schwickert Lars20,Scott Kirsty21,Sharrack Basil22,Sillen Henrik23,Singleton David12,Vereijken Beatrix24,Vogiatzis Ioannis25,Yarnall Alison1,Rochester Lynn26,Mazza Claudia9,Eskofier Bjoern2,Din Silvia Del1

Affiliation:

1. Newcastle University

2. Friedrich-Alexander University Erlangen-Nuernberg

3. The University of Sheffield

4. Ecole Polytechnique Federale de Lausanne (EPFL)

5. Tel Aviv Sourasky Medical Center

6. University of Sassari

7. LMAM - EPFL

8. Robert Bosch (Germany)

9. University of Sheffield

10. Barcelona Institute for Global Health (ISGlobal)

11. Politecnico di Torino

12. University College Dublin

13. University of Bologna

14. ISGlobal

15. University Hospital Schleswig-Holstein, Campus Kiel

16. Northumbria University

17. University Hospital Schleswig-Holstein

18. Novartis Institute of Biomedical Research

19. McRoberts

20. Robert-Bosch-Hospital

21. Sheffield University

22. Sheffield Teaching Hospitals NHS Foundation Trust & University of Sheffield

23. AstraZeneca

24. Norwegian University of Science and Technology

25. Northumbria University Newcastle

26. University of Newcastle

Abstract

Abstract Background: Estimation of walking speed from wearable devices requires combining a set of algorithms in a single analytical pipeline. The aim of this study was to validate a pipeline for walking speed estimation and assess its performance across different factors (complexity, speed, and walking bout duration) to make recommendations on the use and validity of wearable devices for real-world mobility analysis. Methods: Participants with Parkinson's Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and for 2.5 hours in the real-world, using a wearable device worn on the lower back. Two pipelines for estimating WS were validated across 1298 detected walking bouts, against 1365 walking bouts detected by a multi-sensor reference system. Results: In the laboratory, the mean absolute error (MAE) and mean absolute relative error (MARE) for estimation of walking speed ranged from − 0.06 to 0.04 m/s and 2.1–14.4% respectively, with ICCs ranged between good (0.79) and excellent (0.91). The real-world MAE ranged from − 0.04 to 0.11, and MARE from 1.3–22.7%, where ICCs showed moderate (0.57) to good (0.88) agreement. Errors were lower for cohorts with no major gait impairments, for less complex gait tasks and when considering longer walking bouts. Conclusions: We demonstrated that the analytical pipelines estimated walking speed with good accuracy. Accuracy was dependent upon confounding factors, highlighting the importance of undertaking a robust technical validation of wearable device-derived walking speed before clinical application. Trial registration ISRCTN – 12246987.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3