Dynamic Service Provisioning in Heterogenous Fog Computing Architecture Using Deep Reinforcement Learning

Author:

Govarchinghaleh Yaghoub Alizadeh1,Sabaei Masoud1

Affiliation:

1. Amirkabir University of Technology

Abstract

Abstract

The exponential growth of IoT devices and the surge in the data volume, coupled with the rise of latency-intensive applications, has led to a heightened interest in Fog computing to meet user demands. In this context, the service provisioning problem consists of dynamically selecting desirable fog computing nodes and routing user traffic to these nodes. Given that the fog computing layer is composed of heterogeneous nodes, which vary in resource capacity, availability, and power sources, the service provisioning problem becomes challenging. Existing solutions, often using classical optimization approaches or heuristics algorithms due to the NP-hardness of the problem, have struggled to address the issue effectively, particularly in accounting for the heterogeneity of fog nodes and uncertainty of the ad hoc fog nodes. These techniques show exponential computation times and deal only with small network scales. To overcome these issues, we are motivated to replace these approaches with Deep Reinforcement Learning (DRL) techniques, specifically employing the Proximal Policy Optimization (PPO) algorithm to understand the dynamic behavior of the environment. The main objective of the proposed DRL-based dynamic service provisioning (DDSP) algorithm is minimizing service provisioning costs while considering service delay constraints, the uncertainty of ad hoc fog nodes, and the heterogeneity of both ad hoc and dedicated fog nodes. Extensive simulations demonstrate that our approach provides a near-optimal solution with high efficiency. Notably, our proposed algorithm selects more stable fog nodes for service provisioning and successfully minimizes cost even with uncertainty regarding ad hoc fog nodes, compared to heuristic algorithms.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3