TL-SNN: Event-Driven Visual-Tactile Learning with Temporal and Location Spiking Neurons

Author:

Yang Jing1,Yin Baofan1,Li Shaobo1,Su Zhidong2,Zhang Zhaohu1

Affiliation:

1. Guizhou University

2. Oklahoma State University

Abstract

Abstract

With the continuous development of neuromorphic sensors and spiking neural networks, there is increasing attention on event-driven perception learning in both vision and tactile domains. However, due to the limited information representation capability of existing spiking neurons and the high spatio-temporal complexity of event-driven visual and tactile data, we focus on exploring the application potential of visual and tactile perception in event-driven datasets. We propose an innovative spiking neural network method for integrating visual and tactile perception, aiming to significantly enhance the perceptual and information integration capabilities of the fusion network. Our approach enables the extraction of features from both time and position dimensions, thereby more effectively capturing the spatio-temporal dependencies in event data. Additionally, we introduce a weighted spike loss function to optimize model performance and meet specific task requirements. Experimental results demonstrate that the proposed visual and tactile fusion spiking neural network achieves superior performance compared to baseline algorithms on object recognition, container detection, and slip detection datasets.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3