ESGWKNN: Research on Indoor Localization Algorithm Based on Wi-Fi

Author:

Ye Run1,Pan Shun1,Yan Bin1,Zhang Cheng2,Zhou Xiaojia1

Affiliation:

1. University of Electronic Science and Technology of China

2. Yangtze River Delta Research Institute(Huzhou), University of Electronic Science and Technology of China

Abstract

Abstract

Aiming at the problem that the accuracy of the traditional WiFi-based K-Nearest Neighbor algorithm (KNN) indoor positioning algorithm cannot meet the requirements of precise positioning, this paper proposes a K-nearest neighbor indoor positioning algorithm based on location range limitation, namely the algorithm combining echo state network and Gaussian weighted K-nearest neighbors (ESGWKNN). The ESGWKNN algorithm first uses the echo state network to estimate the range to obtain the local spatial range information, and then uses the GWKNN algorithm to accurately locate within the local spatial range to reduce the positioning accuracy problem caused by excessive space. The experimental results show that compared with the traditional KNN algorithm, the ESGWKNN algorithm has higher positioning accuracy.

Publisher

Research Square Platform LLC

Reference15 articles.

1. Zhang, H., & Pan, S. (2023). LSOS: An FG Position Method Based on Group Phase Ranging Ambiguity Estimation of BeiDou Pseudolite[J]. Remote Sensing, 15(7): 1924.

2. Wenxiang Lin,Kunchan Lan,et al.Indoor Location Learning Over Wireless Fingerprinting System With Particle Markov Chain;Kian;Model[J] IEEE Access,2019

3. Validation of UWB positioning systems for player tracking in tennis[J];Umek A;Personal and Ubiquitous Computing,2020

4. Billa, A., Shayea, I., Alhammadi, A. (2020). An overview of indoor localization technologies: Toward IoT navigation services[C]//2020 IEEE 5th International Symposium on Telecommunication Technologies (ISTT). IEEE, : 76–81.

5. Liu, C., Wang, H., Liu, M. (2021). Research and analysis of indoor positioning technology[C]//2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). IEEE, : 1212–1217.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3