Adipose stromal cells increase insulin sensitivity and decrease liver gluconeogenesis in a mouse model of type 1 diabetes mellitus

Author:

Lai Hsiao-Chi1ORCID,Lee Yen-Ju2,Chen Pei-Hsuan3,Tang Chia-Hua3,Chen Lee-Wei3ORCID

Affiliation:

1. National Yang Ming Chiao Tung University

2. Zuoying Armed Forces General Hospital: Kaohsiung Armed Forces General Hospital Zuoying Branch

3. Kaohsiung Veterans General Hospital

Abstract

Abstract Background: Diabetic ketoacidosis (DKA) is a serious complication of hyperglycemic emergency caused by insulin deficiency through accelerated liver gluconeogenesis and glycogenolysis. DKA is most common in type 1 diabetes (T1D). Transplantation of islet cells and pancreas is an alternative to insulin injection for treating T1D. However, this alternative is only suitable for some patients. This study investigated the effects and mechanisms of adipose stromal vascular fraction (SVF) cells on liver gluconeogenesis and insulin sensitivity in an insulin-dependent T1D animal model. Methods: SVF cells were obtained from wild-type inguinal adipose tissue and transplanted into the peritoneal cavity of type I diabetic Akita (Ins2Akita) mice. Results: We found that transplantation of 5 × 106 SVF cells from wild-type adipose tissue significantly downregulated proinflammatory genes of TNF-α, IL-1β, IL-33, iNOS, and DPP4 in the liver and upregulated anti-inflammatory factors IL-10 and FOXP3 in blood serum and liver tissue 7 days after injection. Moreover, we found that the expression levels of G6pc and Pck1 were significantly decreased in the Akita mice livers. Furthermore, the intraperitoneal insulin tolerance test assay showed that diabetic Akita mice significantly had increased insulin sensitivity, reduced fasting blood glucose, and restored glucose-responsive C-peptide expression compared with the control Akita group. This result was noted 14 days after administration of 5 × 106 or 1 × 107 SVF cells from wild-type adipose tissue into diabetic Akita mice. Conclusions: Together, these findings suggest that adipose tissue-derived SVF cells could suppress liver inflammation, regulate liver gluconeogenesis, and improve insulin sensitivity in an animal model with T1D. Therefore, adipose SVF cells may be novel cellular therapeutic alternatives to maintain steady liver gluconeogenesis in T1D.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3