Sexually dimorphic characteristics of dopamine D1 receptor-expressing neurons within the shell of the nucleus accumbens of adolescent mice

Author:

Aziz Heather C1ORCID,Mangieri Regina A1

Affiliation:

1. The University of Texas at Austin College of Pharmacy

Abstract

Abstract Background: Adolescence, a developmental stage, is characterized by psychosocial and biological changes. The nucleus accumbens (NAc), a striatal brain region composed of the core (NAcC) and shell (NAcSh), has been linked to risk-taking behavior and implicated in reward seeking and evaluation. Most neurons in the NAc are medium spiny neurons (MSNs) that express dopamine D1 receptors (D1R+) and/or dopamine D2 receptors (D2R+). Changes in dopaminergic and glutamatergic systems occur during adolescence and converge in the NAc. While there are previous investigations into sex differences in membrane excitability and synaptic glutamate transmission in both subdivisions of the NAc, to our knowledge, none have specified NAcSh D1R+MSNs from mice during mid-adolescence. Methods: Sagittal brain slices containing the NAc were prepared from B6.Cg-Tg(Drd1a-tdTomato)6Calak/J mice of both sexes from postnatal days 35-47. Stained smears were made from vaginal samples from female mice to identify the stage of Estrous at death. Whole-cell electrophysiology recordings were collected from NAcSh D1R+MSNs in the form of membrane-voltage responses to current injections and spontaneous excitatory postsynaptic currents (sEPSCs). Results: The action potential duration was longer in males than infemales. Additionally, the frequency of sEPSCs was higher in females, and the mean event amplitude was smaller than that in males. We found no evidence of the observed sex differences being driven by the stage of the Estrous cycle and no physiological parameter significantly varied with respect to the Estrous cycle. Conclusions: Taken together, our results indicate that NAcSh D1R+MSNs exhibit sex differences during mid-adolescence that are independent of the stage of Estrous, in both AP waveform and glutamate transmission, possibly due to changes in voltage-gated potassium channels and α-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors, respectively.

Publisher

Research Square Platform LLC

Reference66 articles.

1. Neurobehavioral changes in adolescence;Spear LP;Curr Dir Psychol Sci,2000

2. Adolescence: Developmental stage and mental health morbidity;Fisher J;Int J Soc Psychiatry,2011

3. Who takes risks when and why? Determinants of risk taking;Figner B;Curr Dir Psychol Sci,2011

4. Age Patterns in Risk Taking Across the World;Duell N;J Youth Adolesc,2018

5. Adolescents: which risks for their life and health?;Balocchini E;J Prev Med Hyg,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3