A Machine Learning Approach for Forecasting the Efficacy of Pyridazine Corrosion Inhibitors

Author:

Trisnapradika Gustina Alfa1,Akrom Muhamad1,Rustad Supriadi1,Dipojono Hermawan Kresno2,Maezono Ryo3,Diño Wilson Agerico4

Affiliation:

1. Universitas Dian Nuswantoro

2. Bandung Institute of Technology

3. Japan Advanced Institute of Science and Technology

4. Osaka University

Abstract

Abstract

This paper presents a machine learning (ML) methodology grounded in quantitative structure-property relationship (QSPR) principles for the prediction of corrosion inhibition efficiency (CIE) values, specifically focusing on pyridazine inhibitor compounds. The training phase incorporates the kernel density estimation (KDE) function to generate virtual samples, aiming to enhance the prediction accuracy of the ML model. The study evaluates the performance of three models, namely gradient boosting (GB), random forest (RF), and k-nearest neighbor (KNN). The results exhibit a substantial enhancement in predictive ability following the incorporation of virtual samples. Specifically, coefficient of determination (R2) values for GB, RF, and KNN models increase from − 0.33 to 0.97, -0.20 to 0.96, and − 0.17 to 0.95, respectively, with the addition of 1000 virtual samples. Correspondingly, root mean square error (RMSE) values for each model experience a significant decrease, reducing from 9.20 to 1.57, 9.07 to 1.81, and 8.60 to 2.12., respectively. This augmentation enhances the correlation between features and targets, resulting in more accurate predictions and eliminating the necessity for feature selection. Furthermore, it implies resilience to model variations, eliminating the need for model selection. The proposed methodology is a crucial link between theoretical research and experimental synthesis, providing a reliable and accurate prediction tool. This tool proves instrumental in efficiently designing and exploring corrosion inhibitor candidates, thereby contributing to the advancement of effective corrosion inhibition strategies.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3