Osteoprotegerin is an early marker of the fibrotic process and of antifibrotic treatment responses in ex vivo lung fibrosis

Author:

Putri Kurnia S.S.1,Adhyatmika Adhyatmika2,Boorsma Carian E.3,Habibie Habibie4,Ru Mitchel J.R.5,Heukels Peter6,Timens Wim3,Jager Marina H.5,Hinrichs Wouter L.J.5,Olinga Peter5,Melgert Barbro N.3

Affiliation:

1. Universitas Indonesia

2. Universitas Gadjah Mada

3. University Medical Center Groningen

4. Hasanuddin University

5. University of Groningen

6. Erasmus MC

Abstract

Abstract Background Lung fibrosis is a chronic lung disease with a high mortality rate with only two approved drugs (pirfenidone and nintedanib) to attenuate its progression. To date there are no reliable biomarkers to assess fibrosis development and/or treatment effects for these two drugs. Osteoprotegerin (OPG) is used as a serum marker to diagnose liver fibrosis and we have previously shown it associates with lung fibrosis as well. Methods Here we used murine and human precision-cut lung slices to investigate the regulation of OPG in lung tissue to elucidate whether it tracks with (early) fibrosis development and responds to antifibrotic treatment to assess its potential use as a biomarker. Results OPG mRNA expression in murine lung slices was higher after treatment with profibrotic cytokines TGFβ1 or IL13 and closely correlated with Fn and PAI1 mRNA expression. More OPG protein was released from fibrotic human lung slices than from the control human slices and from TGFβ1 and IL13-stimulated murine lung slices compared to control murine slices. This OPG release was inhibited when murine slices were treated with pirfenidone or nintedanib. OPG release from human fibrotic lung slices was inhibited by pirfenidone treatment. Conclusion OPG can already be detected during the early stages of fibrosis development and responds, both in early- and late-stage fibrosis, to treatment with antifibrotic drugs currently on the market for lung fibrosis. Therefore, OPG should be further investigated as a potential biomarker for lung fibrosis and a potential surrogate marker for treatment effect.

Publisher

Research Square Platform LLC

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3