An integrin-targeting AAV developed using a novel computational rational design methodology presents improved targeting of the skeletal muscle and reduced liver tropism

Author:

Hong Ai Vu1ORCID,Suel Laurence1,Poupiot Jérôme1,Richard Isabelle1

Affiliation:

1. Genethon

Abstract

Abstract Current adeno-associated virus (AAV) gene therapy using nature-derived AAVs is limited by non-optimal tissue targeting. In the treatment of muscular diseases (MD), high doses are therefore often required, but can lead to severe adverse effects. To lower treatment doses, we rationally designed an AAV that specifically targets skeletal muscle. We employed a novel computational design that integrated binding motifs of integrin alpha V beta 6 (αVβ6) into a liver-detargeting AAV capsid backbone to target the human αVβ6 complex – a selected AAV receptor for skeletal muscle. After sampling the low-energy capsid mutants, all in silico designed AAVs showed higher productivity compared to their parent. We confirmed in vitro that the enhanced transduction is due to the binding to the αVβ6 complex. Thanks to inclusion of αVβ6-binding motifs, the designed AAVs exhibited enhanced transduction efficacy in human differentiated myotubes as well as in murine skeletal muscles in vivo. One notable variant, LICA1, showed similar muscle transduction to other published myotropic AAVs, while being significantly more strongly liver-detargeted. We further examined the efficacy of LICA1, in comparison to AAV9, in delivering therapeutic transgenes in two mouse MD models at a low dose of 5E12 vg/kg. At this dose, AAV9 was suboptimal, while LICA1 transduced effectively and significantly better than AAV9 in all tested muscles. Consequently, LICA1 corrected the myopathology, restored global transcriptomic dysregulation, and improved muscle functionality. These results underline the potential of our design method for AAV engineering and demonstrate the relevance of the novel AAV variant for gene therapy treatment of MD.

Publisher

Research Square Platform LLC

Reference49 articles.

1. Data file S1

2. Data file S2

3. REFERENCES AND NOTES

4. Adeno-associated virus vector as a platform for gene therapy delivery;Wang D;Nat Rev Drug Discov,2019

5. AAV vectors: The Rubik's cube of human gene therapy;Pupo A;Molecular therapy: the journal of the American Society of Gene Therapy,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3