Population parameters of Drosophila larval cooperative foraging.

Author:

Liao Amy1,Qian Christy1,Abdi Sepideh1,Yee Peyton1,Cursain Sean Michael1,Condron Niav1,Condron Barry1

Affiliation:

1. University of Virginia

Abstract

Abstract Cooperative foraging behavior can be advantageous when there is a common exploitable resource. By cooperating, members of the group can take advantage of the potential of increased efficiency of working together as well as equitable distribution of the product. An experimental signature of cooperative foraging is an Allee effect where at a certain number of individuals, there is a peak of fitness. What happens when there are intruders especially ones that do not contribute to any work required for foraging? Drosophila larvae secrete digestive enzymes and exodigest food. Under crowded conditions in liquid food these larvae form synchronized feeding clusters which provides a fitness benefit. A key for this synchronized feeding behavior is the visually guided alignment between adjacent larvae in a feeding cluster. Larvae who do not align their movements are excluded from the groups and subsequently lose the benefit. This may be a way of editing the group to include only known members. To test the model, the fitness benefit from cooperative behavior was further investigated to establish an Allee effect for a number of strains including those who cannot exodigest or cluster. In a standard lab vial, about 40 larvae is the optimal number for fitness. Combinations of these larvae were also examined. The expectation was that larvae who do not contribute to exodigestion are obligate cheaters and would be expelled. Indeed, obligate cheaters gain greatly from the hosts but paradoxically, so do the hosts. Clusters that include cheaters are more stable. Therefore, clustering and the benefits from it are dependent on more than just the contribution to exodigestion. This experimental system should provide a rich future model to understand the metrics of cooperative behavior.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3