Process Optimization for Biosurfactant Production by Bacillus aryabhattai SPS1001 using Taguchi Method

Author:

Fatima Farkhunda1,Tiwari Nishi Prakash1,Singh Varsha1ORCID

Affiliation:

1. Birla Institute of Technology

Abstract

Abstract

This study employs Taguchi design of experiments (DOE) to optimize biosurfactant yield by analyzing the impact of various input parameters. Signal-to-noise ratio analysis is utilized for optimization, corroborated by ANOVA findings. Regression equations depicts response behaviour and are validated through a confirmation test. Taguchi methodology identifies optimal conditions for maximum biosurfactant yield: agitation (180 rpm), inoculum size (2%), beef extract (5 g/L), diesel (20 ml/L), peptone (5 g/L), NaCl (7 g/L), incubation time (4 days), pH (7.9), and yeast extract (6 g/L). This yields an 8.33% increase to 1.53 g/L, with initial optimum parameters projecting 1.41 g/L. ANOVA ranks and quantifies control factor contributions, revealing agitation's significant (34.12%) impact on yield. The study underscores the viability of Taguchi's optimal conditions for substantial yield improvement within specific ranges. The strong alignment between expected and experimental yields affirms the reliability of developed models for optimal yield selection. This study underscores the power of statistical techniques like Taguchi DOE and ANOVA in systematically enhancing biosurfactant production by Bacillus aryabhattai SPS1001 and paves the way for future advancements in bioprocess optimization.

Publisher

Springer Science and Business Media LLC

Reference20 articles.

1. Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant;Varjani SJ;Bioresource technology,2017

2. Biosurfactants: production and applications;Reis RS;Biodegradation-life of science,2013

3. A review on application of soft computing techniques in machining of particle reinforcement metal matrix composites;Laghari RA;Archives of Computational Methods in Engineering,2020

4. Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network;Tsao CC;Journal of materials processing technology,2008

5. Kinetic study and modeling of biosurfactant production using Bacillus sp;Heryani H;Electronic Journal of Biotechnology,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3