Design Optimization for Hydrostatic Pressure in Hybrid Composite Cylinders

Author:

Ngwa Akongnwi Nfor1,Chaudhary Birendra1,Matos Helio1,Shukla Arun1

Affiliation:

1. University of Rhode Island

Abstract

Abstract

This study explores an optimization system to achieve the highest collapse pressure on glass-carbon hybrid composite cylinders under hydrostatic loading conditions. This work evaluates and validates previously established composite buckling solutions for cylindrical composite structures under hydrostatic pressure with experimental results of hybrid composite shells. It utilizes the validated analytical solution to optimize the buckling pressure by varying layup configuration, optimum layup angle, material content, and thickness of each lamina. The optimization is performed on asymmetric and symmetric layup cases to evaluate the influence of the hybrid layup construction on the buckling performance of the structure. Results show that the thicker glass fiber plies are preferred for inner layers and the stiffer carbon fiber plies for the outermost layers to achieve maximum buckling collapse pressure for all the optimization cases, as this configuration provides superior flexural rigidity. For hybrid composite structures with asymmetric configurations, the collapse pressure can be higher when most layers are made of glass fiber if the glass layers are at least twice as thick as the carbon layers. Similarly, axial-load-resistant layers (0o) should be located around the laminate’s geometric center with the hoop-load-resistant layers (90o) on or near the outermost layers and shear-resistant layers (45o) between these layers for both symmetric and asymmetric hybrid structures. Moreover, long tubes with small diameters (L/D > 10) favor hoop bending stiffnesses (90o) for all layers in the laminate due to less influence of boundary conditions at endcap locations.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3