Translating GWAS Findings to Inform Drug Repositioning Strategies for COVID-19 Treatment

Author:

Tsai Ming-Ju1,Jeong Sohyun1,Yu Fangtang1,Chen Ting-Fu2,Li Peng-Hsuan2,Juan Hsueh-Fen3,Huang Jia-Hsin2,Hsu Yi-Hsiang4

Affiliation:

1. Hebrew SeniorLife

2. Taiwan AI Labs

3. National Taiwan University

4. Broad Institute

Abstract

Abstract We developed a computational framework that integrates Genome-Wide Association Studies (GWAS) and post-GWAS analyses, designed to facilitate drug repurposing for COVID-19 treatment. The comprehensive approach combines transcriptomic-wide associations, polygenic priority scoring, 3D genomics, viral-host protein-protein interactions, and small-molecule docking. Through GWAS, we identified nine druggable host genes associated with COVID-19 severity and SARS-CoV-2 infection, all of which show differential expression in COVID-19 patients. These genes include IFNAR1, IFNAR2, TYK2, IL10RB, CXCR6, CCR9, and OAS1. We performed an extensive molecular docking analysis of these targets using 553 small molecules derived from five therapeutically enriched categories, namely antibacterials, antivirals, antineoplastics, immunosuppressants, and anti-inflammatories. This analysis, which comprised over 20,000 individual docking analyses, enabled the identification of several promising drug candidates. All results are available via the DockCoV2 database (https://dockcov2.org/drugs/). The computational framework ultimately identified nine potential drug candidates: Peginterferon alfa-2b, Interferon alfa-2b, Interferon beta-1b, Ruxolitinib, Dactinomycin, Rolitetracycline, Irinotecan, Vinblastine, and Oritavancin. While its current focus is on COVID-19, our proposed computational framework can be applied more broadly to assist in drug repurposing efforts for a variety of diseases. Overall, this study underscores the potential of human genetic studies and the utility of a computational framework for drug repurposing in the context of COVID-19 treatment, providing a valuable resource for researchers in this field.

Publisher

Research Square Platform LLC

Reference40 articles.

1. US.Food & Drug. Coronavirus Treatment Acceleration Program. FDA. 2021. https://www.fda.gov/drugs/coronavirus-covid-19-drugs/coronavirus-treatment-acceleration-program-ctap

2. Challenges and opportunities with drug repurposing: finding strategies to find alternative uses of therapeutics;Talevi A;Expert Opin Drug Discov.,2020

3. Drug repurposing from the perspective of pharmaceutical companies;Cha Y;Br J Pharmacol.,2018

4. Remdesivir for the Treatment of Covid-19 - Final Report;Beigel JH;N Engl J Med.,2020

5. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19;Kalil AC;N Engl J Med,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3