Temporal relationships between photoreceptor degeneration and proliferative response of Müller glia: A comparative study on the effects of different alkylating agents

Author:

Nomura-Komoike Kaori1,Nishino Reiko2,Fujieda Hiroki1

Affiliation:

1. Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women's Medical University

2. Department of Ophthalmology, School of Medicine, Tokyo Women's Medical University

Abstract

Abstract Animal models for retinal degeneration are essential for elucidating its pathogenesis and developing new therapeutic strategies in humans. N-methyl-N-nitrosourea (MNU) has been extensively used to construct a photoreceptor-specific degeneration model, which has served to unveil the molecular process of photoreceptor degeneration as well as the mechanisms regulating the protective responses of remaining cells. Methyl methanesulphonate (MMS), also known to cause photoreceptor degeneration, is considered a good alternative to MNU due to its higher usability; however, detailed pathophysiological processes after MMS treatment remain uncharacterized. Here, we analyzed the time course of photoreceptor degeneration, Müller glial proliferation, and expression of secretory factors after MNU and MMS treatments in rats. While the timing of rod degeneration was similar between the treatments, we unexpectedly found that cones survived slightly longer after MMS treatment. Müller glia reentered the cell cycle at a similar timing after the two treatments; however, the G1-S transition occurred earlier after MMS treatment. Moreover, growth factors such as FGF2 and LIF were more highly upregulated in the MMS model. These data suggest that comparative analyses of the two injury models may be beneficial for understanding the complex regulatory mechanisms underlying the proliferative response of Müller glia.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3