Machine learning model for the prediction of gram-positive and gram- negative bacterial bloodstream infection based on routine laboratory parameters

Author:

Zhang Fan1,Wang Hao1,Liu Liyu2,Su Teng2,Ji Bing2

Affiliation:

1. Qilu Hospital of Shandong University

2. Shandong University

Abstract

Abstract Background Bacterial bloodstream infection is responsible for the majority of cases of sepsis and septic shock. Early recognition of the causative pathogen is pivotal for administration of adequate empiric antibiotic therapy and for the survival of the patients. In this study, we developed a feasible machine learning (ML) model to predict gram-positive and gram-negative bacteremia based on routine laboratory parameters. Methods Data for 2118 patients with bacteremia were obtained from the Medical Information Mart for Intensive Care dataset. Patients were randomly split into the training set and test set by stratified sampling, and 374 routine laboratory blood test variables were retrieved. Variables with missing values in more than 40% of the patients were excluded. Pearson correlation test was employed to eliminate redundant features. Five ML algorithms were used to build the model based on the selected features. Additionally, 132 patients with bacteremia who were treated at Qilu Hospital of Shandong University were included in an independent test cohort to evaluate the model. Results After feature selection, 32 variables remained. All the five ML algorithms performed well in terms of discriminating between gram-positive and gram-negative bacteremia, but the performance of convolutional neural network (CNN) and random forest (RF) were better than other three algorithms. Consider of the interpretability of models, RF was chosen for further test (ROC-AUC = 0.768; 95%CI = 0.715–0.798, with a sensitivity of 75.20% and a specificity of 63.79%). To expand the application of the model, a decision tree (DT) was built utilizing the major variables, and it achieved an AUC of 0.679 (95%CI = 0.632–0.723), a sensitivity of 66%, and a specificity of 67.82% in the test cohort. When tested in the Qilu Hospital cohort, the ROC-AUC of the RF and DT models were 0.666 (95%CI = 0.579–0.746) and 0.615 (95%CI = 0.526–0.698), respectively. Finally, a software was developed to make the RF- and DT-based prediction models easily accessible. Conclusion The present ML-based models could effectively discriminate between gram-positive and gram-negative bacteremia based on routine laboratory blood test results. This simple model would be beneficial in terms of guiding timely antibiotic selection and administration in critically ill patients with bacteremia before their pathogen test results are available.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3