Machine Learning Predicts Cerebral Vasospasm in Subarachnoid Hemorrhage Patients

Author:

Zarrin David1,Suri Abhinav1,McCarthy Karen2,Gaonkar Bilwaj3,Wilson Bayard3,Colby Geoffrey3,Freundlich Robert4,Macyszyn Luke3,Gabel Eilon5ORCID

Affiliation:

1. David Geffen School of Medicine

2. Department of Anesthesiology, Vanderbilt University Medical Center

3. UCLA Department of Neurosurgery

4. Vanderbilt University Medical Center

5. UCLA

Abstract

Abstract Background Cerebral vasospasm (CV) is a feared complication occurring in 20-40% of patients following subarachnoid hemorrhage (SAH) and is known to contribute to delayed cerebral ischemia. It is standard practice to admit SAH patients to intensive care for an extended period of vigilant, resource-intensive, clinical monitoring. We used machine learning to predict CV requiring verapamil (CVRV) in the largest and only multi-center study to date. Methods SAH patients admitted to UCLA from 2013-2022 and a validation cohort from VUMC from 2018-2023 were included. For each patient, 172 unique intensive care unit (ICU) variables were extracted through the primary endpoint, namely first verapamil administration or ICU downgrade. At each institution, a light gradient boosting machine (LightGBM) was trained using five-fold cross validation to predict the primary endpoint at various timepoints during hospital admission. Receiver-operator curves (ROC) and precision-recall (PR) curves were generated. Results A total of 1,750 patients were included from UCLA, 125 receiving verapamil. LightGBM achieved an area under the ROC (AUC) of 0.88 an average of over one week in advance, and successfully ruled out 8% of non-verapamil patients with zero false negatives. Minimum leukocyte count, maximum platelet count, and maximum intracranial pressure were the variables with highest predictive accuracy. Our models predicted “no CVRV” vs “CVRV within three days” vs “CVRV after three days” with AUCs=0.88, 0.83, and 0.88, respectively. For external validation at VUMC, 1,654 patients were included, 75 receiving verapamil. Predictive models at VUMC performed very similarly to those at UCLA, averaging 0.01 AUC points lower. Conclusions We present an accurate (AUC=0.88) and early (>1 week prior) predictor of CVRV using machine learning over two large cohorts of subarachnoid hemorrhage patients at separate institutions. This represents a significant step towards optimized clinical management and improved resource allocation in the intensive care setting of subarachnoid hemorrhage patients.

Publisher

Research Square Platform LLC

Reference30 articles.

1. A review of cerebral vasospasm in aneurysmal subarachnoid haemorrhage Part I: Incidence and effects;Dorsch NWC;J Clin Neurosci,1994

2. EEG Monitoring to Detect Vasospasm after Subarachnoid Hemorrhage |… https://www.reliasmedia.com/articles/34004-eeg-monitoring-to-detect-vasospasm-after-subarachnoid-hemorrhage.

3. Frontera, J. A. et al. Defining Vasospasm After Subarachnoid Hemorrhage. Stroke 40, 1963–1968 (2009).

4. Current Options for the Management of Aneurysmal Subarachnoid Hemorrhage-Induced Cerebral Vasospasm: A Comprehensive Review of the Literature;Dabus G;Interv Neurol,2013

5. Diringer, M. N. et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care 15, 211–240 (2011).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3